Machine Learning Coffee seminar "Bayesian Deep Learning for Image Data"

Lecturer : 
Melih Kandemir
Event type: 
HIIT seminar
Doctoral dissertation
Event time: 
2018-02-26 09:15 to 10:00
Seminar room T5, CS building, Konemiehentie 2, Otaniemi

Melih Kandemir, Özyeğin University

Bayesian Deep Learning for Image Data

Abstract: Deep learning is the paradigm that lies at the heart of state-of-the-art machine learning approaches. Despite their groundbreaking success on a wide range of applications, deep neural nets suffer from: i) being severely prone to overfitting, ii) requiring intensive handcrafting in topology design, iii) being agnostic to model uncertainty, iv) and demanding large volumes of labeled data. The Bayesian approach provides principled solutions to all of these problems. Bayesian deep learning converts the loss minimization problem of conventional neural nets into a posterior inference problem by assigning prior distributions on synaptic weights. This talk will provide a recap of recent advances in Bayesian neural net inference and detail my contributions to the solution of this problem. I will demonstrate how Bayesian neural nets can achieve groundbreaking performance in weakly-supervised learning, active learning, few-shot learning, and transfer learning setups when applied to medical image analysis and core computer vision tasks. I will conclude by a summary of my ongoing research in reinforcement active learning, video-based imitation learning, and reconciliation of Bayesian Program Learning with Generative Adversarial Nets.

Dr. Kandemir studied computer science in Hacettepe University and Bilkent University between 2001 and 2008. Later on, he pursued his doctoral studies in Aalto University (former Helsinki University of Technology) on the development of machine learning models for mental state inference until 2013. He worked as a postdoctoral researcher in Heidelberg University, Heidelberg Collaboratory for Image Processing (HCI) between 2013 and 2016. As of 2017, he is an assistant professor at Özyeğin University, Computer Science Department. Throughout his career, he took part in various research projects in funded collaboration with multinational corporations including Nokia, Robert Bosch GmbH, and Carl Zeiss AG. Bayesian deep learning, few-shot learning, active learning, reinforcement learning, and application of these approaches to computer vision are among his research interests.

Machine Learning Coffee seminars are weekly seminars held jointly by the Aalto University and the University of Helsinki. The seminars aim to gather people from different fields of science with interest in machine learning. Talks will begin at 9:15 am and porridge and coffee will be served from 9:00 am.

Next talk:

  • March 5, Kumpula: Tuuli Toivonen



Last updated on 20 Feb 2018 by Homayun Afrabandpey - Page created on 20 Feb 2018 by Homayun Afrabandpey