Towards Perfect Density Estimation

Petri Myllymäki
Professor, Department of Computer Science
Director, Helsinki Institute for Information Technology (HIIT)
University of Helsinki & Aalto University
Finland
Bayesian Networks

- A Bayesian network structure G is a DAG that represents
 - A set of (pairwise) conditional independence statements
 - A set of joint probability distributions
 - A factorization of these joint probability distributions into a product of conditional
- The probability distributions can be indexed by a parameter vector θ instantiating the conditional probabilities determined by the factorization

$$P(X_i = k | G_i = j, \Theta) = \theta_{ijk}$$
Model probability

- \(P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D)} \)

- Assume (for the moment) that the structure prior \(P(G) \) is uniform (and hence can be ignored)
 - \(P(G \mid D) \propto P(D \mid G) \) marginal likelihood
 - \(P(D \mid G) = \int P(D \mid \theta, G)P(\theta \mid G)d\theta \)

- Pick up a suitable parameter prior \(P(\theta \mid G) \), and the rest is just calculus?

- **BUT...which prior?**
Objective Learning

- Assume a “data-driven” scenario where no (or very little) useful prior information on the domain exists
 - New problem domains
 - Models with hidden variables
- How to construct a non-informative, objective scoring function for selecting or weighting different models?
- How to gain a better understanding on the effect of the parameter prior in structure learning?
Marginal Likelihood

- Assuming

 - discrete i.i.d. data

 - multinominal distributions for the conditionals, with the Dirichlet (conjugate) priors

 - parameter independence and modularity

 - no missing data, no hidden variables

then the marginal likelihood of a BN can be computed by the *Bayesian-Dirichlet (BD)* score

\[
P(D \mid G) = \int P(D \mid \theta, G)P(\theta \mid G)d\theta = \prod_{i=1}^{m} \prod_{j=1}^{q_i} \frac{\Gamma(\sum_{k=1}^{r_i} \alpha_{ijk})}{\Gamma(\sum_{k=1}^{r_i}(\alpha_{ijk} + N_{ijk}))} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}.
\]
Decomposability

- The BD score is decomposable: marginal likelihood factorizes like the likelihood, and can be computed as a product (a sum) of local scores.
- With the model used here, the marginal likelihood distribution \(P(D | G) \) is actually equivalent to one of the distributions in the set defined by \(G \), obtained by setting each parameter to its expected value.
- N.B. Marginal likelihood can be also computed sequentially (row by row).

Likelihood equivalence

- Equivalence: If G_1 and G_2 represent the same set of conditional independence assumptions, then $\text{Score}(G_1) = \text{Score}(G_2)$

- $P(D \mid G_1) = P(D \mid G_2)$ if (and only if) the hyperparameters are of a certain form:
 - These **BDeu priors** are obtained by setting $\alpha_{ijk} = \alpha/(q_ir_i)$, where α is a single scaling parameter called the *equivalent sample size (ESS)*
Sensitivity to Priors

- The BDeu score is likelihood equivalent and decomposable, but requires setting the value of the ESS hyperparameter.

- Unfortunately, the score is quite sensitive to this number (Silander & Myllymäki, UAI-2007)
Sensitivity to Priors

The image shows a graph plotting the number of arcs in the MAP model against the logarithm of the prior parameter (log(alpha)). The graph illustrates how the number of arcs varies with different values of the prior parameter. The x-axis represents the range of log(alpha) values, while the y-axis shows the number of arcs in the MAP model. The data appears to indicate a steep increase in the number of arcs as the prior parameter values move towards higher values, suggesting a sensitivity to the prior distribution.
Sensitivity to Priors

![Graph showing sensitivity to priors with various arcs and alpha values.](image)
Normalized Maximum Likelihood (NML)

- Let D' be the observed data, and denote the corresponding maximum likelihood estimator by $\theta^*(D')$
- $P(D \mid \theta^*(D'))$ is a distribution over D
- $P(D \mid \theta^*(D))$ is NOT and $\Sigma_D P(D \mid \theta^*(D)) > 1$.

The NML distribution can not be constructed as a BD distribution with some prior (but the Jeffreys prior gets close)
Optimality of NML

- The NML distribution is given by

\[P(D) = \frac{P(D; \hat{\theta}(D))}{\sum_{D'} P(D'; \hat{\theta}(D'))} \]

- **NML is the unique min-max (i.e. worst-case) optimal distribution** satisfying

\[\min_{Q()} \max_{D} \log \frac{P(D; \hat{\theta}(D))}{Q(D)} \]

(Shtarkov, 1987)
Computing the NML

\[P(D) = \frac{P(D; \hat{\theta}(D))}{\sum_{D'} P(D'; \hat{\theta}(D'))} \]

- Brute-force calculation of the normalizing constant (also called parametric complexity) is obviously computationally infeasible
- NML is likelihood equivalent but **not** decomposable
Computing the NML

\[- \log P_G(D) = - \log P_G(D; \hat{\theta}(D)) + \log \sum_{D'} P_G(D'); \hat{\theta}(D') \]

- Fisher approximation

\[- \log P_G(D) = - \log P_G(D; \hat{\theta}(D)) + \frac{k}{2} \log \frac{n}{2\pi} + \log \int_\theta \sqrt{\left| I(\theta) \right|} d\theta + o(1) \]

- Bayesian Information Criterion (BIC)

\[- \log P_G(D) \approx - \log P_G(D; \hat{\theta}(D)) + \frac{k}{2} \log n \]
MDL ≠ BIC

• NML-based approaches can be motivated by the information-theoretic Minimum Description Length (MDL) principle of Rissanen

• Historical background:
 - 1970-80: “Two-part MDL” = BIC
 - 1980s: Marginal likelihood codes (distributions)
 - 1996: NML
Special Cases

- Single multinomial:
 - The parametric complexity $C(n,k)$ can be computed via linear-time recursion (Kontkanen & Myllymäki, 2007):
 \[C(k+2,n) = C(k+1,n) + \frac{n}{k} C(k,n) \]

- This recursive formula can be used as a building block for
 - NML clustering
 - NML histogram density estimation

- Tree-structured Bayesian networks: NML can be computed in polynomial time with respect to data size (but the time is exponential wrt. number of values of non-leaf nodes)
Variants of NML

- **Factorized NML**
 - decomposable but not likelihood equivalent

- **Sequential NML**
 - likelihood equivalent but not decomposable
Non-informative priors?

BD + uniform prior

BD + the Jeffreys prior

Laplace

Krichevsky–Trofimov

sNML-2

NML
NML Histograms

Figure 2: The Gaussian finite mixture densities g_{m6}, g_{m5}, g_{m2} and g_{m8} and the NML-optimal histograms with sample sizes 100, 1000 and 10000.

Figure 3: The Hellinger distance between the four generators, which means that there is no need to assume anything about the underlying generating density. Since the model selection criterion is based on the NML distance, it is possible to learn generic, variable-width bin histograms automatically adapt to various kinds of densities. The results showed that the NML histograms automatically adapt to various kinds of densities, complex shapes. The results showed that the NML histograms have several advantages. Firstly, the MDL criterion for model selection has nice theoretical optimality properties. Secondly, by regarding model selection (stochastic complexity) has nice theoretical optimality properties. Secondly, by regarding model selection (stochastic complexity) has nice theoretical optimality properties. Secondly, by regarding model selection (stochastic complexity) has nice theoretical optimality properties.
NML for Piecewise Constant Density Estimation

- Model structure (G): number of bins + locations of bin borders (bin widths)
- Model parameters (θ): bin probability masses
- Model structure selection criterion: multinomial NML (linear recursion)
- Model search: dynamic programming
It Works!
Obvious Extensions

- Structure prior $P(G)$: now uniform wrt. to potential bin border points? “Recursive NML”?
- Comparisons with Bayesian alternatives?
- Piecewise linear (or exponential) density functions?
- 2 (or n) -dimensional NML density functions?
 - The NML criterion is not the problem here, but the dynamic programming breaks down (?)
 - What type of shapes?
 - Rectangles? Voronoi Tessellations?