ATMDATA: Automatic aTMospheric Data Analysis Tools based on AI technologies

HIIT-funded research proposes feature-engineering-based machine learning classifiers to analyze atmospheric data. Aerosol particles have a profound impact on human health, air quality, and global climate, with atmospheric new-particle formation (NPF) being a critical process in their generation. Traditionally, NPF events have been categorized into classes (Ia, Ib, II) or non-events through manual visual inspection. While this method has been effective, it is both labor-intensive and susceptible to subjective interpretation, especially when dealing with extensive long-term datasets. The growing need for an automated, objective, and efficient classification system has become increasingly clear, as it would enhance accuracy and consistency in the analysis of NPF events.
ATMDATA

We developed feature-engineering-based machine learning classifiers to effectively differentiate between new-particle formation (NPF) event and non-event days at the SMEAR II station in Hyytiälä, Finland. These classifiers utilize a range of time series features derived from multi-modal log-normal distributions. The machine learning models demonstrated over 90% accuracy in identifying NPF event and non-event days, and approximately 80% accuracy in further classifying the days into specific subcategories, such as class Ia, class Ib, class II, and non-event.

One of the key findings of the study is the classifiers’ exceptional ability to consistently identify all class Ia event days, where particle growth and formation rates are measured with high confidence. The study also conducted a comparative analysis between feature-engineering-based machine learning methods and image-based deep learning techniques. The results indicate that, with well-crafted feature engineering, machine learning not only matches but can also surpass deep learning approaches, particularly in situations where time efficiency is paramount.

The findings of this study set the stage for advancing the use of AI tools in automating atmospheric data analysis. This progress is crucial for deepening our understanding of atmospheric aerosols and their effects on human health, air quality, and climate.

Contact Person:
Martha Arbayani Zaidan, SMIEEE, Ph.D., Docent
Academy Research Fellow | Data Scientist | Head of IRON group
Department of Computer Science (CS) and Institute for Atmospheric & Earth System Research (INAR)/Physics, University of Helsinki, Finland
www.marthazaidan.com
www.helsinki.fi/iron

References:

Zaidan, M.A., Haapasilta, V., Relan, R., Junninen, H., Aalto, P.P., Kulmala, M., Laurson, L. and Foster, A.S., 2018. Predicting atmospheric particle formation days by Bayesian classification of the time series features. Tellus B: Chemical and Physical Meteorology, 70(1), pp.1-10.

Zaidan, M.A., Haapasilta, V., Relan, R., Paasonen, P., Kerminen, V.M., Junninen, H., Kulmala, M. and Foster, A.S., 2018. Exploring non-linear associations between atmospheric new-particle formation and ambient variables: a mutual information approach. Atmospheric Chemistry and Physics, 18(17), pp.12699-12714.

Laarne, P., Amnell, E., Zaidan, M.A., Mikkonen, S. and Nieminen, T., 2022. Exploring non-linear dependencies in atmospheric data with mutual information. Atmosphere, 13(7), p.1046.

  • Updated:
  • Published:
Share
URL copied!

Read more news

anonymity of AI
AI, Artificial Intelligence, Computer Science Department, Highlight, Research, University of Helsinki Published:

How to ensure anonymity of AI systems?

When training artificial intelligence systems, developers need to use privacy-enhancing technologies to ensure that the subjects of the training data are not exposed, new study suggests.
Director at OKKA Foundation, Tuulikki Similä, Arto Hellas, and chairwoman of the board of directors of Nokia, Sari Baldauf.
Aalto University, Awards, Computer Science Department, Highlight Published:

Arto Hellas receives the Nokia Foundation teaching recognition award

Arto Hellas was awarded the inaugural Nokia-OKKA Educational Recognition Award for his long-term efforts in advancing ICT education.
Katsiaryna and Arash at ECAI 2025
AI, Computer Science Department, News from HIIT, Research, University of Helsinki Published:

GRADSTOP: Early Stopping of Gradient Descent via Posterior Sampling presented at ECAI 2025

HIIT Postdoc Katsiaryna Haitsiukewich presented a full paper at ECAI-2025
HIIT Open 2025
Aalto University, Community Outreach, Education, Foundations, News from HIIT Published:

HIIT Open 2025 programming contest

Two weeks ago, 16 teams and 41 contestants gathered in Otaniemi to compete on algorithmic problem solving.