Foundations of Computing
Overview
The focus area on Foundations of Computing pursues fundamental research at the algorithmic and mathematical foundations of computing, integrating a broad range of expertise including multiple areas of algorithmics, artificial intelligence, computational complexity, cryptography, distributed computing, logic, and quantum computing.
Interested in joining us?
To participate in our activities, attend our open events described below. To get invited to email lists, chat channels, and so forth., please contact Petteri Kaski (Aalto University) or Mikko Koivisto (University of Helsinki). Our community is growing. See Helsinki Algorithms and Theory for a non-exhaustive list of researchers involved.
Activities
Helsinki CS Theory Seminar. A weekly series of talks on a broad scope of CS theory hosted by the Aalto University CS Theory Group. Link to seminar page.
Helsinki Logic Seminar. A weekly series of talks in mathematical logic hosted by the Helsinki Logic Group. Link to seminar page.
Foundations Friday. A monthly get-together event for the community typically consisting of a tutorial and lunch as well as follow-up activity and discussions. Link to seminar page.
Research Highlights
Online locality meets distributed quantum
computing
A.Akbari, X. Coiteux-Roy, F. d’Amore, F. Le Gall, H. Lievonen, D. Melnyk, A. Modanese, S. Pai, M.-O. Renou, V. Rozhoň, J. Suomela
We present new connections between distributed computing, quantum computing, random processes,
and online graph algorithms.
STOC 2025 · https://arxiv.org/abs/2403.01903
Distributed quantum advantage for local problems
A. Balliu, S. Brandt, X. Coiteux-Roy, F. d’Amore, M. Equi, F. Le Gall, H. Lievonen, A. Modanese,
D. Olivetti, M.-O. Renou, J. Suomela, L. Tendick, I. Veeren
We present the first example of a local graph problem that can be solved with a network of quantum computers
much faster than with a networks of classical computers.
STOC 2025 · https://arxiv.org/abs/2411.03240
Shared randomness helps with local distributed problems
A. Balliu, M. Ghaffari, F. Kuhn, A. Modanese, D. Olivetti, M. Rabie, J. Suomela, J. Uitto
We show that there are locally checkable labeling problems that are much faster to solve in a distributed setting with the help of shared randomness than private randomness.
ICALP 2025 · https://arxiv.org/abs/2407.05445
On Consistent Bayesian Inference from Synthetic Data
Ö Räisä, J. Jälkö, A. Honkela
We derive sufficient conditions for performing consistent Bayesian inference from (private) synthetic data and show how violating them can lead to inconsistency.
Journal of Machine Learning Research, 2025 https://arxiv.org/abs/2305.16795
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ö Räisä, A. Honkela
We derive a bias-variance decomposition that shows that using an ensemble of models trained on multiple (private) synthetic datasets can be beneficial for accuracy of downstream machine learning applications.
AISTATS 2025 · https://arxiv.org/abs/2402.03985
Noise-Aware Differentially Private Variational Inference
T. Alrawajfeh, J. Jälkö, A. Honkela
We develop a post-processing method to derive accurate variance estimates from differentially private variational inference using stochastic optimisation.
AISTATS 2025 · https://arxiv.org/abs/2410.19371
Optimal Decision Tree Pruning Revisited: Algorithms and Complexity
J. Harviainen, F. Sommer, M. Sorge, S. Szeider
We provide a comprehensive analysis of parameterized
complexity of mitigating overfitting in decision trees by
pruning them.
ICML 2025 · https://arxiv.org/pdf/2503.03576
No Metric to Rule them All: Toward Principled Evaluations of Graph-Learning Datasets
C. Coupette, J. Wayland, E. Simons, B. Rieck
We introduce RINGS, a principled framework to assess
the quality of graph-learning datasets by measuring differences
between the original dataset and its perturbed representations.
ICML 2025 · https://doi.org/10.48550/arXiv.2502.02379
Papercraft: Lattice-based Verifiable Delay Function Implemented
M. Osadnik, D. Kaviani, V. Cini, R. W. F. Lai, G. Malavolta
We design and implement the first near-practical lattice-based verifiable delay functions (VDF). A VDF is a cryptographically unparallelisable function whose correct evaluation can be verified efficiently.
S&P 2025 · https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00159
Lattice-based Obfuscation from NTRU and Equivocal LWE
V. Cini, R. W. F. Lai, I. K. Y. Woo
We propose a new plausibly post-quantum secure construction of indistinguishability obfuscation (iO) by designing a new mechanism for releasing decryption hints.
CRYPTO 2025
Hollow LWE: A New Spin — Unbounded Updatable Encryption from LWE and PCEM
R. Albrecht, B. Benčina, R. W. F. Lai
We propose a new mechanism which allows unbounded many key updates in lattice-based encryption schemes.
EUROCRYPT’25 https://eprint.iacr.org/2025/340.pdf
Succinct PPRFs via Memory-Tight Reductions
J. Alwen, C. Brzuska, J. Govinden, P. Harasser, S. Tessaro
We circumvent impossibility results on the efficiency and security of group messaging by a new low-space reduction for the Goldreich-Goldwasser-Micali pseudorandom function (PRF) combined with a recent work on proof-complexity friendly obfuscation.
CRYPTO 2025
Quantum Speedups for Bayesian Network Structure Learning
J. Harviainen, K. Rychkova, M. Koivisto
We give quantum algorithms that lower the base of
the exponent in the complexity of Bayesian network
structure learning and show that this is presumably
unachievable with classical algorithms.
UAI 2025, to appear · https://arxiv.org/abs/2305.19673
Nearly-Optimal Distributed Ruling Sets for Trees and High-girth Graphs
M. Baumecker, Y. Maus, J. Uitto
We give distributed algorithms for the classic ruling set problem. In the case of trees and high-girth graphs, our algorithms are very close to optimal, both in terms of dominating distance and runtime.
PODC 2025, to appear · https://arxiv.org/abs/2504.21777
On the Locality of Hall’s Theorem
S. Brandt, Y. Maus, A. Naraynan, F. Schager, J. Uitto
We develop an algorithm design technique based on adistributed variant of Hall’s theorem. Our variant of Hall’s theorem ensures the existence of an output at each node based on its
O(log n)-hop neighborhood that can be combined into a globally
feasible solution without further communication. We showcase our technique on several fundamental problems such as edge-coloring and sinkless orientation, where matching lower bounds are known.
SODA’25
Fast deterministic chromatic number under the asymptotic rank conjecture
A. Björklund, R. Curticapean, T. Husfeldt, P. Kaski, K. Pratt
We show that under Strassen’s asymptotic rank conjecture,
the chromatic number of an n-vertex graph can be computed
deterministically in O(1.99982n) time.
SODA’25
A universal sequence of tensors for the asymptotic rank conjecture
P. Kaski, M. Michałek
We present an explicit sequence Ud of {0,1}-valued tensors
whose tensor-rank growth captures the worst-case tensor
exponent σ(d) of d×d×d tensors, thus enabling an approach
towards proof or disproof of Strassen’s asymptotic rank
conjecture.
ITCS’25
A Simple Parallel Algorithm with Near-Linear Work for Negative-Weight
Single-Source Shortest Paths
N. Fischer, B. Haeupler, R. Latypov, A. Roeyskoe, A. Sulser
We give the first parallel algorithm with near-linear work and state-of-the-art span for the classical problem of computing Single-Source Shortest Paths (SSSP) in general graphs with negative-weight edges. Our novel bottom-up approach leads to a particularly clean and simple algorithm, which can be seen as a parallel black-box reduction from SSSP in general graphs to graphs without negative edges.
SOSA’25
A Multilinear Johnson–Lindenstrauss Transform
P. Kaski, H. Mannila, A. Matakos
The Johnson–Lindenstrauss family of transforms constitutes a key
algorithmic tool for reducing the dimensionality of a Euclidean space
with low distortion of distances. Rephrased from geometry to linear
algebra, one seeks to reduce the dimension of a vector space while
approximately preserving inner products. We present a multilinear
generalization of this bilinear (inner product) setting that admits both
an elementary randomized algorithm as well as a short proof of
correctness using Orlicz quasinorms.
SOSA’25
On Bounded Storage Key Agreement and One-Way Functions
C. Brzuska, C. Egger, G. Couteau, W. Quach
We study cryptography based on space-gaps, where honest parties use linear space s, but an adversary needs quadratic space or more. It has long been known that 2-message key agreement with quadratic space gap is possible without cryptographic assumptions, but that larger gaps are information-theoretically impossible.
We show that under the assumption of one-way functions, arbitrarily large polynomial space-gaps can be achieved and that, in turn, key agreement with larger than quadratic space-gap imply cryptographic one-way functions.
TCC’24
Evasive LWE Assumptions: Definitions, Classes, and Counterexamples
C. Brzuska, A. Ünal, I.K.Y. Woo
Novel lattice assumptions enable powerful applications such as new efficient constructions for obfuscation and encryption schemes with advanced functionalities.
We study the family of evasive learning with errors assumptions (eLWE), finding counterexamples against large classes of eLWE assumptions. We determine classes which continue to be plausible given our attacks and show that these classes suffice to enable several of the aforementioned applications.
Asiacrypt’24
Traitor Tracing without Trusted Authority from Registered Functional Encryption
P. Branco, R.W.F. Lai, M. Maitra, G. Malavolta, A. Rahimi, I.K.Y. Woo
We propose and construct a new notion of traitor tracing where no trusted authority is responsible for generating user secret keys. Instead, users can generate their own keys and register to the system via a public process. Our construction is via efficient pairing-based constructions of registered functional encryption for linear and quadratic functions, which were previously only known based on obfuscation.
Asiacrypt’24 https://eprint.iacr.org/2024/179
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
M. Klooß, R.W.F. Lai, N.K. Nguyen, M. Osadnik
We propose a diverse toolkit for constructing concretely efficient lattice-based succinct argument systems. In technical terms, we provide a framework for eliminating the so-called soundness gap in these systems and algebraic tools for lifting integer relations to ring relations.
Asiacrypt’24
Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors
C. Boschini, D. Kaviani, R.W.F. Lai, G. Malavolta, A. Takahashi, M. Tibouchi
A threshold signature scheme allows any t-subset of n parties to jointly sign a message. We construct the first lattice-based threshold signature scheme which simultaneously satisfies the following properties: 1) two-round signing, where the first round can be preprocessed offline, 2) concretely efficient for at least t = 1024, and 3) secure based on the standard learning with errors (LWE) assumption in the random oracle model.
SP’24 https://eprint.iacr.org/2024/1113
Subsampling is not magic: Why large batch sizes work for differentially private stochastic optimisation
O. Räisä, J. Jälkö, A. Honkela
We provide a theoretical analysis of the impact of batch size in differentially private stochastic optimisation, as used in deep learning.
ICML’24
Noise-Aware Differentially Private Regression via Meta-Learning
O. Räisä, S. Markou, M. Ashman, W. P. Bruinsma, M. Tobaben, A. Honkela, R. E. Turner
We develop a method for meta-learning a neural network that can produce a differentially private regression model in one forward pass. (Collaboration with U Cambridge & Microsoft.)
NeurIPS’24
Complexity Results and Algorithms for Preferential Argumentative Reasoning in ASPIC+
T. Lehtonen, D. Odekerken, J. P. Wallner, M. Järvisalo
We provide complexity results and algorithms for reasoning in the central structured argumentation formalism of ASPIC+. Via establishing formal rephrasing of key argumentation semantics, we pinpoint the exact complexity of reasoning in ASPIC+ under preferences for various semantics and reasoning modes.. Complementing the complexity results, we detail answer set programming encodings for deciding acceptance for the NP/coNP-complete reasoning tasks and empirically show that it scales significantly better than first translating ASPIC+ reasoning tasks to abstract argumentation.
KR’24
Certified MaxSAT Preprocessing
H. Ihalainen, A. Oertel, Y. K. Tan, J. Berg, M. Järvisalo, M. O. Myreen, J. Nordström
We demonstrate for the the first time how pseudo-Boolean proof logging can be used to certify the correctness of a wide range of modern MaxSAT preprocessing techniques. By combining and extending the VeriPB and CakePB tools, we provide formally verified end-to-end proof checking that the input and preprocessed output MaxSAT problem instances have the same optimal value. An extensive evaluation on applied MaxSAT benchmarks shows that our approach is feasible in practice.
IJCAR’24
A new characterization of FAC0 via discrete ordinary differential equations
M. Antonelli, A. Durand, J. Kontinen
In this paper, we generalize the elegant approach to implicit
computational complexity recently delineated by Bournez and
Durand and based on discrete ordinary differential equations
(ODEs) to the parallel setting by introducing original ODE-based
characterizations for the small circuit classes FAC0 and FTC0.
MFCS’24 https://doi.org/10.4230/LIPIcs.MFCS.2024.10
Width Helps and Hinders Splitting Flows
M. Cáceres, M. Cairo, A. Grigorjew, S. Khan, B. Mumey, R. Rizzi, A.I. Tomescu, L. Williams
We study the role of (arc-)width of a directed acyclic graph in the problem of minimally decomposing a network flow into weighted paths. On the positive side, we use width to obtain an approximation algorithm over integer weights. On the negative side, we improve the worst-case approximation ratio of a popular greedy algorithm by leveraging the width of the subgraphs obtained during the execution of the algorithm.
ACM Transactions on Algorithms, 2024 https://doi.org/10.1145/3641820
Modular SAT-based techniques for reasoning tasks in team semantics
A. Durand, J. Kontinen, J. Väänänen
We study the complexity of model checking, counting and enumeration for logics in team semantics. Our approach is based on modular reductions of these problems into the corresponding problems of various classes of Boolean formulas. We illustrate our approach via several new tractability/intractability results.
Journal of Computer and System Sciences, 2024 (https://doi.org/10.1016/j.jcss.2024.103575)
Unifying SAT-Based Approaches to Maximum Satisfiability Solving
H. Ihalainen, J. Berg, M. Järvisalo
We develop UniMaxSAT, a general unifying algorithmic framework that captures in general core-guided, implicit hitting set and objective- bounding computations in MaxSAT solving. The framework offers a unified way of establishing quite generally the correctness of the current solving approaches. We illustrate this by formally showing that UniMaxSAT can simulate the computations of various algorithmic instantiations of the three types of MaxSAT solving approaches. Furthermore, UniMaxSAT can be instantiated in novel ways giving rise to new algorithmic variants of the approaches.
Journal of Artificial Intelligence Research, 2024
Approximate counting of linear extensions in practice
T. Talvitie, M. Koivisto
We present novel schemes for estimating the number of linear extensions of a given partial order. Our schemes enjoy controllable approximation guarantees, but not always polynomial worst-case running time bounds. In practice, we observe speedups by several orders of magnitude, compared to the previous state of the art.
Journal of Artificial Intelligence Research, 2024 https://doi.org/10.1613/jair.1.16374
Functional Lower Bounds in Algebraic Proofs: Symmetry, Lifting, and Barriers
T. Hakoniemi, N. Limaye, I. Tzameret
Ideal Proof System (IPS), introduced by Grochow and Pitassi, is a strong algebraic proof system that is able to simulate most known propositional proof systems. In this work we prove lower new lower bounds for some subsystems of IPS. This includes first explicit lower bounds over finite fields for some fragments of IPS and the strongest to date lower bounds against constant-depth refutations of simple hard instances. Conversely, we show that our techniques cannot yield any non-trivial lower bounds for Boolean instances in any sufficiently strong propositional proof system.
STOC’24 https://doi.org/10.1145/3618260.3649616
The Asymptotic Rank Conjecture and the Set Cover Conjecture Are Not Both True
A. Björklund, P. Kaski
We show that Strassen’s asymptotic rank conjecture and the set cover conjecture are inconsistent.
STOC’24 https://doi.org/10.1145/3618260.3649656
No distributed quantum advantage for approximate graph coloring
X. Coiteux-Roy, F. d’Amore, R. Gajjala, F. Kuhn, F. Le Gall, H. Lievonen, A. Modanese, M.-O. Renou, G. Schmid, J. Suomela
We give a near-complete characterization of the hardness of graph coloring in distributed settings. We present a classical algorithm and give a near-matching lower bound that holds also for distributed quantum algorithms.
STOC’24 https://arxiv.org/abs/2307.09444
Sorting Pattern Avoiding Permutations via 0-1 Matrices forbidding Product Patterns
P. Chalermsook, S. Pettie, S. Yingchareonthawornchai
Improved upper bounds for sorting sequences avoiding a given permutation. The bounds are proved by tight analysis of the density of 0-1 matrices that forbid a certain product pattern. This is a showcase where computer science research questions inspire new directions in extremal combinatorics.
SODA’24
A Single-Pass Semi-Streaming Algorithm for (3 + 𝜀)-Approximate Correlation Clustering
M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto
We consider the correlation clustering problem in the semi-streaming model. We give a single pass algorithm that obtains a (3 + 𝜀)-approximation to minimum disagreement. Our work is the first that works in dynamic streams, where the input can change during the execution of the algorithm.
SODA’24 https://arxiv.org/abs/2205.07593
Adaptive Massively Parallel Coloring in Sparse Graphs
R. Latypov, Y. Maus, S. Pai, J. Uitto
We study the coloring of everywhere sparse graphs Parametrized by their arboricity. We consider the Adaptive Massively Parallel Computation (AMPC) model that captures distributed communication and cheap remote reads in many data centers. We give an extremely fast, O(1)-round, algorithm that colors the input graph with number of colors polynomial as a function of the arboricity.
PODC’24 https://arxiv.org/abs/2402.13755
The Group Access Bounds for Binary Search Trees
P. Chalermsook, M. Gupta, W. Jiamjitrak, A. Pareek, S. Yingchareonthawornchai
We propose a new family of bounds (that generalizes the classical access lemma) for binary search trees. This allows us to unify and strengthen many strong BST bounds that have appeared in the literature under the same framework.
ICALP’24
Parameterized Approximation for Clustering in Geometric Spaces
F. Abbassi, S. Banerjee, J. Byrka, P. Chalermsook, A. Gadekar, K. Khodamoradi, D. Marx, R. Sharma, J. Spoerhase
We “complete” the landscape of robust clustering in Euclidean spaces. Moreover, robust clustering (aka socially fair clustering) becomes more tractable in Euclidean spaces, in contrast to the general metric spaces.
ICALP’24
Another Hamiltonian Cycle in Bipartite Pfaffian Graphs
A. Björklund, P. Kaski, J. Nederlof
We identify a graph class—the bipartite Pfaffian graphs of minimum degree three—where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found in linear time.
ICALP’24 https://arxiv.org/abs/2308.01574
Testing Spreading Behavior in Networks with Arbitrary Topologies
A. Modanese, Y. Yoshida
We initiate the study of property testing in dynamic environments with arbitrary topologies. Previous works had only considered the case where the topology was a grid.
ICALP’24 https://arxiv.org/abs/2309.05442
Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: a Complete Classification
E. Galby, S. Kisfaludi-Bak, D. Marx, R. Sharma
In Planar Directed Steiner Network, we are given some input planar digraph G, a set T of terminals, and a demand digraph D on the terminals that is chosen from some fixed class D. The goal is to find a minimum size subgraph of G that satisfies the connectivity requirements among the terminals as defined by D. This is a generalizes several network design problems. We give a complete complexity classification for k=|T| based on the pattern class D.
ICALP’24 https://arxiv.org/pdf/2208.06015
Cut paths and their remainder structure, with applications
M. Cairo, S. Khan, R. Rizzi, S. Schmidt, A. I. Tomescu, E. C. Zirondelli
We generalize cut arcs (arcs on all walks between some pair of vertices) to cut paths. The remainder structure of a cut path leads to faster algorithms for some reachability problems from bioinformatics.
STACS’24 https://doi.org/10.4230/LIPIcs.STACS.2023.17
Separator Theorem and Algorithms for Planar Hyperbolic Graphs
S. Kisfaludi-Bak, J. Masaříková, E. J. van Leeuwen, B. Walczak, K. Węgrzycki
The hyperbolicity of a graph, informally, measures how close a graph is (metrically) to a tree. In this paper we initiate the study of planar hyperbolic graphs. We prove a strengthening of the planar separator theorem where the separators are geodesic paths or cycles, and derive near-linear fully polynomial time approximation schemes for some prominent graph problems.
SoCG’24 https://arxiv.org/pdf/2310.11283
A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space
S. Kisfaludi-Bak and G. van Wordragen
We propose a data structure in d-dimensional hyperbolic space that is a natural counterpart to quadtrees in Euclidean spaces. Based on the quadtree, we construct a Steiner spanner, which allows us to solve the Approximate Nearest Neighbor problem in hyperbolic spaces dynamically in an efficient and elegant manner that also outperforms previous algorithms.
SoCG’24 https://arxiv.org/pdf/2305.01356
Fine-Grained Complexity of Earth Mover’s Distance under Translation
K. Bringmann, F. Staals, K. Wegrzycki, G. van Wordragen
The Earth Mover’s Distance of two point sets isthe minimum total edge length of a perfect matching between them, and it is an important measure of distance. In this paper we studied the variant where we minimize the distance under translations of one of the point sets. In the 1-dimensional case we give a quadratic algorithm,a nd prove that it is best possible under the Orthogonal Vectors Hypothesis. In higher dimensions we obtain n^{2d+2} algorithms in the L_1 and L_infinity metrics, and rule out n^{o(d)} algorithms under the Exponential Time Hypothesis.
SoCG’24 https://arxiv.org/abs/2403.04356
Complexity of Neural Network Training and ETR: Extensions with Effectively Continuous Functions
T. Hankala, M. Hannula, J. Kontinen, J. Virtema
We show that the training problem for NNs equipped with activation functions f_1,..,f_n is as hard as deciding the existential theory of the reals extended with f_1,…,f_n. For the sigmoid activation, decidability of the training problem turns out to be equivalent with the Tarski’s open problem on the decidability of exponential arithmetic. For the sine function the NN training problem is undecidable.
AAAI’24 https://doi.org/10.1609/aaai.v38i11.29118
Faster perfect sampling of Bayesian network structures
J. Harviainen, M. Koivisto
We give an algorithm that runs in expected time O(2.829n), getting below O(3n) for the first time. Empirically, we observe speedups of several orders of magnitude over the state of the art.
UAI’24
The Shortest Even Cycle Problem Is Tractable
A. Björklund, T. Husfeldt, P. Kaski
Given a directed graph as input, we show how to efficiently find a shortest (directed, simple) cycle on an even number of vertices.
SIAM Journal on Computing https://doi.org/10.1137/22M1538260
An ETH-Tight Exact Algorithm For Euclidean TSP
M. de Berg, H. L. Bodlaender, S. Kisfaludi-Bak, S. Kolay
In Euclidean TSP, we are given a set of points in Euclidean space, and the goal is to find the shortest closed curve containing all the points. We settle the complexity of this problem by providing a 2^{O(n^{1-1/d})} algorithm via a new separator theorem, and a matching lower bound of 2^{Ω(n^{1-1/d})} under the Exponential Time Hypothesis.
SIAM Journal on Computing https://doi.org/10.1137/22M1469122
On counting propositional logic and Wagner’s hierarchy
M. Antonelli, U. Dal Lago, P. Pistone
We introduce an extension of classical propositional logic with counting quantifiers. Beyond providing a sound and complete proof system, we show that validity problems for this logic can capture counting complexity classes and logically characterize Wagner’s hierarchy.
Theoretical Computer Science https://doi.org/10.1016/j.tcs.2023.113928
Parameterized Approximation Schemes for Clustering with General Norm Objectives
F. Abbassi, S. Banerjee, J. Byrka, P. Chalermsook, A. Gadekar, K. Khodamoradi, D. Marx, R. Sharma, J. Spoerhase
We give a clean and simple approximation scheme for clustering problems. Our algorithm (despite being oblivious to the input structures and objective functions) handles almost all known clustering objectives as well as multiple metric spaces, thus resolving more than 10 clustering problems via a single algorithm.
FOCS’23
Composable Long-Term Security with Rewinding
R. Berger, B. Broadnax, M. Klooß, J. Mechler, J. Müller-Quade, A. Ottenhues, M. Raiber
Long-Term Security allows to analyze the security of protocols in a setting where all hardness assumptions no longer hold after the protocol execution has finished. In this work, we circumvent existing impossibility results by making use of new techniques, allowing rewinding-based simulation in a way that universal composability is possible. More specifically, we define the notion of security with a rewinding helper and, similar to prior work, provide “robustness theorems” which assert that many protocols remain secure even in the presence of this helper.
TCC’23 https://doi.org/10.1007/978-3-031-48624-1_19 https://eprint.iacr.org/2023/363
Chainable Functional Commitments for Unbounded-Depth Circuits
D. Balbás, D. Catalano, D. Fiore, R. W. F. Lai
We introduce a new notion called chainable functional commitments (CFC) and a compiler from CFC for quadratic functions to (C)FC for unbounded-depth circuits. We give a pairing-based construction and a lattice-based construction. These yield the first pairing- and lattice-based FCs and homomorphic signatures for unbounded-depth circuits.
TCC’23 https://doi.org/10.1007/978-3-031-48621-0_13 https://eprint.iacr.org/2022/1365
Universally Composable Auditable Surveillance
V. Fetzer, M. Klooß, J. Müller-Quade, M. Raiber, A. Rupp
A balance between privacy and surveillance is often legally imposed, for example by having backdoors which can be used by authorities to disclose a user’s private information (e.g., lawful interception) and which can also be abused. In this work, we develop a building block for auditable surveillance, which divides the system backdoor between multiple parties, and which ensures that, for every surveillance access, an audit trail is left on a public ledger which includes both publicly accessible statistics as well as secret auditing data, which can be used by an auditor to investigate potential abuse of the system.
Asiacrypt’23 https://doi.org/10.1007/978-981-99-8724-5_14 https://eprint.iacr.org/2023/1343
Noise-Aware Statistical Inference with Differentially Private Synthetic Data
O. Räisä, J. Jälkö, S. Kaski, A. Honkela
We show how to generate differentially private synthetic data that permits valid confidence intervals from downstream analysis.
AISTATS’23
Individual Privacy Accounting with Gaussian Differential Privacy
A. Koskela, M. Tobaben, A. Honkela
We derive a tighter individual privacy accounting method allowing computing of individual privacy losses using Gaussian differential privacy.
ICLR’23
Distributed Symmetry Breaking on Power Graphs via Sparsification
Y. Maus, S. Peltonen, J. Uitto
Ruling sets are a central tool in distributed graph algorithms, in particular, in the strong graph shattering
framework. We provide new tools and efficient algorithms to compute rulings sets.
PODC 2023
Locality in online, dynamic, sequential, and distributed graph algorithms
A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, J. Suomela
We give a unifying view of the concept of locality in four settings: distributed algorithms, sequential greedy algorithms, dynamic algorithms,and online algorithms.
ICALP 2023
Fast dynamic programming in trees in the MPC model
C. Gupta, R. Latypov, Y. Maus, S. Pai, S. Särkkä, J. Studený, J. Suomela, J. Uitto, H. Vahidi
If we have a tree of diameter D, it is easy to do dynamic programming with parallel algorithms in O(D) rounds:
start with the leaf nodes and propagate information upwards. In this work we show that we can dynamic
programming in the massively parallel computation model exponentially faster, in O(log D) rounds.
SPAA 2023
Optimal Deterministic Massively Parallel Connectivity on Forests
A. Balliu, R. Latypov, Y. Maus, D. Olivetti, J. Uitto
A parallel algorithm that detects the connected components of an input forests in conditionally optimal time and space.
SODA’23 https://doi.org/10.1137/1.9781611977554.ch99
Improved Pattern-Avoidance Bounds for Greedy BSTs via Matrix Decomposition
P. Chalermsook, M. Gupta, W. Jiamjitrak, N. O. Acosta, A. Pareek, S. Yingchareonthawornchai
We improve the analysis of Greedy algorithm for online binary search tree, a candidate for dynamic optimality conjecture, for a variety of input sequences. Among various improvements with our new techniques, we also resolve a long-standing post-order traversal conjecture for Greedy.
SODA’23 https://doi.org/10.1137/1.9781611977554.ch22
Efficient Laconic Cryptography from Learning With Errors
N. Döttling, D. Kolonelos, R. W. F. Lai, C. Lin, G. Malavolta, A. Rahimi
Laconic cryptography is an emerging paradigm that studies secure two-party computation which is sender-optimised. Although this paradigm has led to tremendous progress in recent years, all existing constructions rely on highly impractical non-black-box cryptographic techniques, making them only of theoretical interest. We provide, for the first time, completely algebraic constructions of laconic primitives which can be proven secure under the standard Learning With Errors (LWE) assumption. We also provide the first proof-of-concept implementation for any laconic primitives, demonstrating that the construction is indeed practical.
EUROCRYPT’23 https://doi.org/10.1007/978-3-031-30620-4_14 https://ia.cr/2023/404
Lattice-based Succinct Arguments from Vanishing Polynomials
V. Cini, R. W. F. Lai, G. Malavolta
Succinct arguments allow a prover to convince a verifier of the validity of any statement in a language, with minimal communication and verifier’s work. We present some new approaches to constructing efficient lattice-based succinct arguments. Our main technical ingredient is a new commitment scheme based on vanishing polynomials, a notion borrowed from algebraic geometry. A few highlights:
(i) The first recursive folding protocol for linear relations with polylogarithmic verifier runtime. Traditionally, the verifier runtime has been the efficiency bottleneck for such protocols (regardless of the underlying assumptions).
(ii) The first verifiable delay function (VDF) based on lattices, building on a recently introduced sequential relation.
(iii) The first lattice-based linear-time prover succinct argument for NP, in the preprocessing model.
CRYPTO’23
Lattice-Based Timed Cryptography
R.W. F. Lai, G. Malavolta
Timed cryptography studies primitives that retain their security only for a pre-determined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g., randomness generation, sealed-bid auctions, or fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely that repeated squaring in unknown order groups cannot be parallelized. This is a single point of failure in the classical setting and is even false against quantum adversaries.
We put forward a new sequentiality assumption, which essentially says that a repeated application of the standard lattice-based hash function cannot be parallelized. We provide concrete evidence of the validity of this assumption and, to substantiate its usefulness, we show how it enables a new proof of sequential work, with a stronger sequentiality guarantee than prior hash-based schemes.
CRYPTO’23
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
C. Baum, L. Braun, C. Delpech de Saint Guilhem, M. Klooß, E. Orsini, L. Roy, P. Scholl
We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. Our resulting ZK protocols have linear proof size, and are simpler, smaller and faster than related approaches based on MPC-in-the-head.
As an application, we present FAEST, a post-quantum signature scheme based on AES. FAEST is the first AES-based signature scheme to be smaller than SPHINCS+, with signature sizes between 5.6 and 6.6kB at the 128-bit security level. Compared with the smallest version of SPHINCS+ (7.9kB), FAEST verification is slower, but the signing times are between 8x and 40x faster.
CRYPTO’23
Sinkless orientation made simple
A. Balliu, J. H. Korhonen, F. Kuhn, H. Lievonen, D. Olivetti, S. Pai, A. Paz, J. Rybicki, S. Schmid, J. Studený, J. Suomela, J. Uitto
The sinkless orientation problem plays a key role in understanding the foundations of distributed computing. Any deterministic algorithm for sinkless orientation requires Ω(log n) rounds, but all previously known proofs for this result take a complicated detour through randomized algorithms.
We present a new, much simpler proof that gives the result directly for deterministic algorithms.
SOSA’23 https://doi.org/10.1137/1.9781611977585.ch17
On Inference and Learning With Probabilistic Generating Circuits
J. Harviainen, P. R. Vaidyanathan, M. Koivisto
We give significantly faster inference algorithms for probabilistic generating circuits (PGCs). We also show that it is NP-hard to recognize whether a given circuit encodes a probability generating function, hampering efficient learning of PGCs from data.
UAI’23
The Shortest Even Cycle Problem is Tractable
A. Björklund, T. Husfeldt, P. Kaski.
Given a directed graph as input, we show how to efficiently find a shortest (directed, simple) cycle on an even number of vertices.
STOC’22 https://doi.org/10.1145/3519935.3520030
Deterministic (1+𝜀)-Approximate Maximum matching with poly(1/𝜀) Passes in the Semi-Streaming Model and Beyond
M. Fischer, S. Mitrović, J. Uitto.
In the streaming setting, an input graph is given as a stream of edges and, at any time, the algorithm is allowed to keep a (roughly) linear amount of edges in memory. We give a streaming algorithm that makes a polynomial (in 𝜀) number of passes over the stream and finds an almost optimal matching.
STOC’22 https://doi.org/10.1145/3519935.3520039
Sparse matrix multiplication in the low-bandwidth model
Gupta, J. Hirvonen, J. H. Korhonen, J. Studený, J. Suomela
We study the multiplication of uniformly sparse matrices in a distributed setting. If each row and column has at most d nonzero elements, there is a simple algorithm that solves
the problem in O(d²) communication rounds. We show that it is possible to break this quadratic barrier.
SPAA’22 https://doi.org/10.1145/3490148.3538575
Sparsifying, Shrinking and Splicing for Minimum Path Cover in Parameterized Linear Time
M. Cáceres, M. Cairo, B. Mumey, R. Rizzi, A. I. Tomescu
The minimum path cover problem asks for a minimum-size set of paths covering all nodes of a directed acyclic graph. It has various applications in scheduling, distributed computing, databases, bioinformatics. We prove that the problem can be solved parameterized-linear time, namely in time O(k3n + m), where k is
the size of such set of paths, and n and m are the number of nodes and arcs of the graph, respectively.
SODA’22 https://doi.org/10.1137/1.9781611977073.18
Online search for a hyperplane in high-dimensional Euclidean space
A. Antoniadis, R. Hoeksma, S. Kisfaludi-Bak, K. Schewior
We consider the online search problem in which a server starting at the origin of a d-dimensional Euclidean space has to find an arbitrary hyperplane. The best-possible competitive ratio and the length of the shortest curve from which each point on the d-dimensional unit sphere can be seen are within a constant
factor of each other. We show that this length is in Ω(d) ∩ O(d3/2).
Inform. Process. Lett. (2022)
https://doi.org/10.1016/j.ipl.2022.106262
Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs
K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, Z. Parsaeian
We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time O(n2-δ) for some
δ > 0. We show that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in ℝ12, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2 – ε)-approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time. Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors.
SoCG’22 https://doi.org/10.1016/j.ipl.2022.106262
Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable
R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, S. A. K. Thyagarajan
A succinct non-interactive argument of knowledge (SNARK) allows a prover to produce a short proof that certifies the veracity of a certain NP-statement. We propose the first lattice-based SNARK that simultaneously satisfies many desirable properties: It (i) is tentatively post-quantum secure, (ii) is publicly-verifiable, (iii) has a logarithmic-time verifier and (iv) has a purely algebraic structure making it amenable to efficient recursive
composition. Our construction stems from a general technical toolkit that bridges pairing-based and lattice-based cryptography.
CRYPTO’22 https://doi.org/10.1007/978-3-031-15979-4_4 https://ia.cr/2022/941
Security Analysis of the MLS Key Derivation
C. Brzuska, E. Cornelissen, K. Kohbrok
Analysis of the tree-based key derivations in the new cryptographic group messaging protocol MLS.
Security & Privacy 2022
https://doi.org/10.1109/SP46214.2022.9833678
Suggested protocol modifications were integrated into the IETF standard.
https://github.com/mlswg/mls-protocol/pull/453
On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness
C. Brzuska, G. Couteau
We show that building one-way functions from average-case hardness is impossible in a black-box way even when assuming self-amplifying, exponential average-case hardness and when trying to build a one-way function with polynomial security gap.
EUROCRYPT’22
https://doi.org/10.1007/978-3-031-07085-3\_20
Trustworthy Monte Carlo
J. Harviainen, P. Kaski, M. Koivisto
We extend Monte Carlo estimators so that the correctness of outsourced computations can be verified.
NeurIPS’22 (https://openreview.net/forum?id=jglXPY6gH-1)
Deterministic Small Vertex Connectivity in Almost Linear Time
T. Saranurak, S. Yingchareonthawornchai
We study vertex connectivity through the lens of derandomization. We provide an almost linear time algorithm for small connectivity using expanders and vertex cut sparsifiers, breaking the
quadratic-time barrier.
Lower Bounds for Maximal Matchings and Maximal Independent Sets
A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, J. Suomela.
There is a simple distributed algorithm for finding a maximal matching in a bipartite graph: nodes on one side send proposals one by one to their neighbors, and nodes on the other side accept the first proposal they get. In a graph of maximum degree Δ this takes O(Δ) rounds. We show that this is optimal: any distributed algorithm requires Ω(Δ) rounds in large networks.
J. ACM (2021) https://doi.org/10.1145/3461458
Approximating the Permanent with Deep Rejection Sampling
J. Harviainen, A. Röyskö, M. Koivisto.
Our deep rejection sampling method yields the fastest known practical approximation scheme for the permanent of nonnegative matrices. The key idea is to compute tighter upper bounds for the permanent by exact evaluation of the permanent of appropriate rectangular matrices.
NeurIPS’21 [link to online proceedings]
Exponential suppression of bit or phase errors with cyclic error correction
Z. Chen, K.J. Satzinger, …., A. Paler, …, A. Megrant, J. Kelly
We perform error detection with a small logical qubit and show that the results agree with numerical simulations.
These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.
Nature 595 (2021)
https://www.nature.com/articles/s41586-021-03588-y