Dr. Naser Hossein Motlagh received the B.Sc. degree in Information Technology and the M.Sc. degree in Telecommunications Engineering from the University of Vaasa, Finland, in 2012. Dr. Motlagh received his D.Sc. degree in networking technology from the Department of Communications and Networking, School of Electrical Engineering, Aalto University, Finland, in 2018. His doctoral research was focused on exploring solutions for challenges associated with Internet of Thing service delivery using Unmanned Aerial Vehicles (UAVs). In 2018, after receiving the D.Sc. degree, he continued as Postdoctoral researcher at the Department of Industrial Engineering and Management at Aalto University. From January 2019 to December 2020, he was a Postdoctoral fellow within Helsinki Institute for Information Technology (HIIT) – Helsinki Center for Data Science (HiDATA) program. From January 2019, he has been a member of Megasense program and since January 2021, he is a Postdoctoral fellow within Nokia Center for Advanced Research (NCAR) at the University of Helsinki. For more information about Dr. Motlagh, please see his profile page at the University of Helsinki.
Dr. Motlagh’s research is focused on large-scale deployment of sensor networks and providing Internet of Things (IoT) services through data analytics at the edge of wireless communication networks. In general, his research interests include the IoT, wireless sensor networks, environmental sensing, and unmanned aerial and underwater vehicles; with focus on networks, sensing, applications,and services. Dr. Motlagh’s research aims to contribute smart and sustainable solutions and assist solving current and future problems of different environments such as by buildings’ energy optimization, marine pollution monitoring, and air pollution monitoring in urban areas. Part of his research includes finding intelligent and energy efficient solutions in smart buildings. He also seeks novel IoT-based methodologies in smart environments for having healthy work and living spaces. He is carrying out research on large-scale autonomous marine pollution monitoring using autonomous underwater vehicles. In addition, with the use of low-cost air quality sensors and emerging communication technologies such as 5G and beyond networks, he explores solutions for challenges related to enabling massive scale deployments of air quality sensors in urban areas and seeking solutions for healthier living environments.
Dr. Motlagh has published eight journal articles and six conferences papers during his postdoctoral fellowship with Helsinki Institute for Information Technology (HIIT). His contributions are published in top venues such as IEEE Communications Magazine, IEEE Internet Computing Magazine, IEEE Internet of Things Magazine, and IEEE Sensors Journal. He contributed publishing the vision of Megasense program in [1], and his contribution to a conference paper [2] was among the top 5 papers in Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications. In 2020, He was co-teaching one masters level course: Networked Systems and Services (5 cr), and he was a co-supervisor for one master’s thesis. He was also awarded a fellowship at Nokia Center for Advanced Research (NCAR).
Sample of publications in 2020:
[1] Naser Hossein Motlagh, Emil, Lagerspetz, Petteri Nurmi, Xin Li, Samu Varjonen, Julien Mineraud, Matti Siekkinen, Andrew Rebeiro-Hargrave, Tareq Hussein, Tuukka Petäjä, Markku Kulmala, Sasu Tarkoma. Toward massive scale air quality monitoring. IEEE Communications Magazine, 58(2), pp.54-59, 2020.
[2] Andrew Rebeiro-Hargrave, Naser Hossein Motlagh, Samu Varjonen, Emil Lagerspetz, Petteri Nurmi, Sasu Tarkoma. MegaSense: Cyber-physical system for real-time urban air quality monitoring. In Proceedings 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1-6, 2020.
[3] Martha Arbayani Zaidan, Naster Hossein Motlagh, Pak L. Fung, David Lu, Hilkka Timonen, Joel Kuula, Jarkko V. Niemi, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, Tareq Hussein. Intelligent calibration and virtual sensing for integrated low-cost air quality sensors. IEEE Sensors Journal, 20(22), pp. 13638-13652, 2020.